

Prediction of Cryptocurrency Price Movements from Order

Book Data Using LSTM Neural Networks

April 2019

Andrei Alexandru Maxim

BSc. Computer Science

Supervisor: Dr. Denise Gorse

This report is submitted as part requirement for the BSc Degree in Computer

Science at UCL. It is substantially the result of my own work except where

explicitly indicated in the text. The report may be freely copied and distributed

provided the source is explicitly acknowledged.

I

Abstract

The purpose of this work is to investigate the use of a long-short term neural network

(LSTM) for time series prediction, more specifically for cryptocurrency price variation

forecasting. The Bitcoin cryptocurrency market is here used as a testbed for a newly-

proposed trend prediction machine learning algorithm that uses smoothed input data

extracted from the limit order book of the market. The novelty of this project will reside not

only in using LSTM networks in a cryptocurrency context (a relatively unexplored area in the

academic literature), but also in its use of the above-mentioned ingenious input smoothing

strategy, proposed by one of the studied papers.

II

Contents

Chapter 1 – Introduction ... 1

1.1 Early Financial Markets and the Dawn of Market Prediction 1

1.2 In Search of a Forecasting Model .. 1

1.3 Motivation for the Use of Automated Inference ... 2

1.4 Artificial Intelligence, Machine Learning and Neural Networks 2

1.5 Structure of this Report ... 3

Chapter 2 – Background and Literature Survey.. 4

2.1 Cryptocurrency Markets .. 4

2.1.1 Cryptocurrency Basics ... 4

2.1.2 Cryptocurrencies as Financial Assets ... 5

2.2 Neural Networks, Deep Learning, and LSTMs ... 6

2.3 Machine Learning Approaches to Price Prediction ... 9

2.4 Trend Prediction and the methods of Tsantekidis et al... 12

2.4.1 Novel approaches and characteristics.. 12

2.4.2 The smoothing procedure ... 12

2.4.3 Using LSTM units ... 13

2.4.4 Results obtained by Tsantekidis, et al. ... 13

Chapter 3 - Design and Methodology .. 14

3.1 Data Representation .. 14

3.2 Data Acquisition ... 14

3.3 Feature Extraction & Preprocessing ... 15

3.4 Target Label Construction: k & α .. 15

3.4.1 Exploring α .. 16

3.4.2 Exploring k ... 16

3.5 Training / Testing / Validation Data Split .. 17

3.6 Neural Network Architecture: LSTM Design Decisions.. 17

3.6.2 Hidden units .. 18

3.7 Performance Measures - Evaluation .. 18

3.7.1 – Measures of classification performance.. 18

3.7.2 – Measures of profitability .. 19

Chapter 4 – Results ... 21

III

4.1 Initial Results ... 21

4.2 Selection of Second Dataset ... 22

4.3 Train / Test / Validation data split .. 22

4.4 Network hyperparameter selection ... 23

4.5 Training label construction: k & α .. 24

4.5.1 Unexplored implications of the two parameters .. 24

4.5.2 Further investigation of the role of the k parameter .. 25

4.6 Trading Strategy Implementation .. 27

4.6.1 Variable k lookahead, 3 steps trading ... 27

4.6.2 Trading strategy results (profit) ... 28

4.6.3 Trading strategy results (feasibility) ... 32

4.6.4 Trading strategy results (Sharpe Ratio) .. 34

Chapter 5 – Discussion and Conclusions .. 37

5.1 Discussion .. 37

5.2 Future Work .. 37

5.3 Concluding Thoughts ... 38

References: ... 39

Appendix: .. 40

Project Plan (November).. 40

Interim Report (February) .. 43

Data Samples ... 46

MCC full results ... 48

Code entry: .. 50

Manual for the submitted code: .. 57

1

Chapter 1 – Introduction

1.1 Early Financial Markets and the Dawn of Market Prediction

Even though “banking” as a concept has been known to mankind since the earliest of days,

from the ancient societies of Greece, China, India and even The Roman Empire (workers

there getting grain loans from the sovereignty), the birth of a financial market similar to

what we are familiar with nowadays comes no sooner than the late 17th century: London

goldsmiths offered to store the gold of customers in their secured vaults for a small fee,

exchanging the physical quantity for a signed paper stating the exact amount they had in

store – this was the beginning of banknotes. In the same period, Amsterdam was the first

city to witness the emergence of a modern stock market layout, trading capital, bonds and

stocks. Understandably, people immediately tried to seek advantage from these newly

established markets and were hungry for profits. Although the movement on the markets

has always been hugely influenced by an entanglement of factors—political, demographical,

philosophical and so on—modern approaches to understanding economical movements

relate preponderantly on a mathematical interpretation of the situation as a whole.

1.2 In Search of a Forecasting Model

Market forecasting can be scientifically approached from two perspectives:

• Fundamental analysis, where a company’s past performance is studied, and the

potential investor makes predictions as to whether an investment may be profitable

or not, counting on the dependence between capital reward and performance. This

kind of decision making may also be carried out in a top-down manner, starting from

objective analysis of global economy, down to country specifics, domain

perspectives, leaving company position and particularities as the final layer of

investigation.

• Technical analysis on the other hand, disregards the company’s financial profile and

makes predictions only on the basis of past stock prices, looking for common

2

patterns that supposedly repeat themselves and therefore could be predicted to

some extent. Quantitative analysis—the construction of mathematical and

statistical models that find patterns in the markets—has been a huge focus of

contempory interest in trading. Quantitative analyses draw upon large historical

records of prices and require a human professional, skilled in mathematics and

experienced in economics, to construct a model from the patterns he/she may be

able to pick up.

1.3 Motivation for the Use of Automated Inference

Scalability is an inevitable problem for quantitative analysis—no matter how many experts a

team of analysts might consist of, there is a limit as to how much information can be shared

efficiently between humans and how much integrity the resulting solution would then have.

It is obvious that any approach of this kind would be at a disadvantage with the ever-

increasing number of parameters that realistic financial decisions must consider. In addition,

the importance of granular-level data—the small-scale patterns—is completely overlooked

because of the impossibility of processing these large amounts of data. The vast availability

of data in the modern era is thus in fact creating a problem for quantitative analysts. A

machine is needed with greater concentrated computational power, more controllable and

larger memory, as well as undisturbed attention to detail in order to find the complex

patterns that govern the market movements of today.

1.4 Artificial Intelligence, Machine Learning and Neural Networks

Artificial intelligence (AI) is a broad term covering all attempts to create machines that, if

they were human, would be judged to be exercising some degree of intelligence. In earlier

years it predominantly meant rule-based automatic inference systems which would be able

to grant human-made machines the ability of reasoning. The domain has since split into

several fields that nowadays function mostly independently, such as robotics, machine

learning, natural language processing, human-computer interaction etc.

Machine learning (ML) is a term that refers solely to the ability of a computer

program to acquire the ability to perform a given task with no code having been explicitly

written for performing the task, but with numerous examples given which would allow a

3

learning algorithm to create its own solution (e.g. to a classification problem) based on a

large number of trial and error attempts performed on the shown set (the training set).

There are numerous algorithms used for machine learning, however a specific subset

of them are in the current research spotlight: artificial neural networks (ANNs). These are

algorithms that have drawn their inspiration from the inner workings of the brain, although,

artificial neurons and the networks constructed from them only represent real biological

brains at a superficial level. The neurons, which assess information coming from the outside

world, and from their neighbours, are the central part of these algorithms, and in modern

technologies, their complex landscape of interconnections reaches back through several

hidden layers (similar to neuronal clusters) that create a considerable depth (number of

layers) of the network. This is why this niche of AI has come to be known as “deep

learning”.

1.5 Structure of this Report

The remainder of this report will proceed as follows. Chapter 2 will give a brief background

to cryptocurrency markets and the use of neural networks for time series prediction

(focusing on the LSTM model), as well as surveying some relevant literature, Chapter 3 will

cover the methodology of our proposed approach, and Chapter 4 will explore our findings.

The concluding Chapter – 5 – will discuss our results and draw conclusions as to the

effectiveness of our methods, as well as suggesting potential future work.

4

Chapter 2 – Background and Literature Survey

2.1 Cryptocurrency Markets

2.1.1 Cryptocurrency Basics

Cryptocurrencies are decentralised ledger-based assets not issued by any government, not

covered in physical countervalue and untransferable to the physical world. They only exist in

the digital world and their physical existence is replaced by a system of mutual trust

between users, in the form of a register that is being updated simultaneously over

numerous computers throughout the world. The form in which this market is digitally stored

on computers is a called a blockchain, which is a structure similar to a linked list, where each

node is actually an encrypted sequence of transactions.

Despite numerous flaws in time and space performance, anonymity preservation

and inconsistencies in the rewarding system for miners, Bitcoin remains the most widely

used cryptocurrency, perhaps mainly because of the cryptocurrency's notoriety and age.

The Bitcoin blockchain receives a new block approximatively once every eight minutes,

consisting of around 3000 transactions. While the design intention was for the market to be

decentralised—meaning there would be no unique authority that regulates the traffic, or,

more specifically, there would not be a single register stored somewhere that exerts a

higher privilege over the others—there have appeared factors that undermine this desire.

Because of the way that Bitcoin offers rewards to the users that lend their computational

power for block construction, it has become profitable for so called “mining farms” to

emerge onto the market. The operation of these server farms has the ironical effect of re-

centralising the network due to the physical clustering of connections that occurs. The larger

the capabilities of such a mining farm, the stronger its confidence in providing preferential

services to customers that are willing to pay more, i.e. prioritizing a single transaction, one

that payed a fee depending on how fast the client wanted their transaction to be processed.

It thus becomes hard to predict what priority a new transaction will be given on the

network.

5

2.1.2 Cryptocurrencies as Financial Assets

Although the cryptocurrency market seems to be so different technologically compared to

any other market known so far, it is still governed by the principles of offer and demand.

Wherever an asset is eligible to be traded, the relationship between the ones that sell it and

the ones that wish to buy it will always be quantifiable. One tool for representing a market

at a specific moment in time is the limit order book.

Figure 1 - Bitcoin Limit Order Book snapshot (by Courtesy of the CoinbasePro platform)

The contents of this representation are very intuitive to grasp. The image shown

above (fig. 1) is a cumulative graph of offer and demand. On the X-axis there are values

expressed in US dollars ($), so naturally, on the right side, in orange, relating to a higher

price of Bitcoin, there are the positions of sellers that want to sell Bitcoin at a value more

than the market’s mean, and on the left side, in green, there are the positions of buyers that

want to buy Bitcoin for a cheaper price. Logically, the place where those two come close

together is the current market value. More specifically, the arithmetic mean between the

lowest bid (leftmost orange point) and highest ask (rightmost green point) is regarded as the

market price, since the two sides of the order book never intersect. The Y-axis represents

cumulative volumes for each position—this is why the height is uniformly increasing to the

edges, not because there are increasingly many positions that want to buy or sell at that

price, but because the previous depth values (closer to the mean) are also included in the

current height. This means that a good indication of how many positions are up for a

specific price is to analyse the so-called “walls,” the straight upward shifts in coloured areas

at certain price values.

6

2.2 Neural Networks, Deep Learning, and LSTMs

The Introduction chapter explored the motivations for using machine learning, focusing on

the increased granularity of data combined with the incapacity of the human mind to

account for all these highly-detailed movements. Although machine learning has only

recently become very popular, the theory that underlies this technology is not at all new.

Neural networks have been around from the early 1960s and have undergone

several waves of enthusiasm interspersed with losses of interest (e.g. corresponding to the

rise of interest in rule-based A.I in the 1970s). Most recently, there has been a wave of

enthusiasm for what is known as deep learning. Technology developments driven mainly by

the needs of the gaming industry (the evolution of graphical processing units to have

thousands of computational cores) have made possible the efficient implementation of

many-layered neural networks. Multiple layers are a critical requirement for solving even

some simple logic problems, such as the parity problem, and so it is not surprising to find

many such intermediate ("hidden") layers are needed for to solve complex problems in

areas like image processing. The arrangement of the neurons and layers within a network is

known as its architecture and there are many possibilities, with the choice dependent on the

task. For instance, the operation of convolution over multidimensional grid-like data (such as

images) has been found to be exceptionally efficient in recognizing shapes when applied

multiple times, at various levels of abstraction; this currently constitutes the state of the art

solution for most computer vision problems such as image segmentation and image

recognition.

Temporal data, for instance in signal processing or text analysis, where the syntax

and semantics of previous words have a large influence over what is to come next, may best

be handled using recurrent networks (RNNs) to simulate the memory attribute of the

human mind. These networks at each moment in time take as input their own previous

outputs from previous timesteps, typically alongside some newly-presented external input.

There are a number of variants of recurrent networks but one of the most important RNNs

used nowadays is known as an LSTM (Long-Short Term Memory) net.

7

Although the phrase “deep learning” was originally applied only to nets with a very

large number of layers, such as the previously mentioned convolutional nets, the phrase is

also applied nowadays to networks of a more modest size, if a recent learning methodology

is being used within the network. One example of this expanded use of "deep learning" is

the (Tsantekidis et al., 2017) paper which will be discussed in the following section, that

uses a LSTM network—LSTMs being among the methodologies associated with deep

learning—even though in this case only a single, relatively small hidden layer is being used.

LSTM networks have however, independently of the size of the net which they are

incorporated into, revolutionised the approach for time series forecasting in finance, which

previously was done predominantly using sliding windows of a fixed length as inputs to a

multi-layer perceptron (MLP), trained to predict price change. These sliding windows were

used because former types of recurrent networks (prior to LSTMs) suffered from a problem

of “vanishing gradients,” a very damaging consequence of a net's using as inputs its own

outputs from different moment in time, which we will now briefly examine.

 The problem arises fundamentally via the use of backpropagation to calculate the

appropriate weight changes after each trial and error learning attempt. During training,

when the result of a prediction is wrong, a step in the space of weights is taken so as to

decrease the error of the network, and this weight change step, through the mechanism of

derivation of the backpropagation weight update rule, contains a derivative value which is

usually a fraction. Many layers—or equivalently, in an RNN, many passages of the same

information through the network—multiply these derivative factors so that the magnitude

of the associated weight changes becomes very small. Weights are less and less altered

through training because the gradient is constantly diminishing until it completely

disappears. This may lead to the earlier layers being completely left untrained, or, in the

RNN context, to potentially important information from earlier times being ignored. This

"vanishing gradient" problem within a multilayer network is partly solved by using a

different activation function (using rectified linear units (RELU) instead of the tangent

function or the logistic function). However, in the case of RNNs there is not only a potential

problem within the network, if it contains many layers, but more importantly with the

connections through time the network forms with itself by using outputs from its previous

8

states. A common way to visualise the problem is by “unrolling” the network, as in the

figure to follow (fig. 2):

Figure 2 - An unrolled recurrent neural network, as described in the popular blog on LSTMS1

The gradient that is sent back through backpropagation gets altered considerably each time

it passes one of the (red) links. Thus, a gradient with magnitude less that 1 would lead to

vanishing weight changes (approaching closely to the 0 value), while in the case of a

gradient of magnitude greater than 1, the weight changes would be amplified to infinity

(exploding gradient). A vanishing gradient, such as would be found in an earlier-style RNN

such as an Elman net, leads to only the most recent input activity being responded to,

making the recurrent network insensitive to associations in the distant past i.e. not able to

make correlations between desired outputs and events that happened further in the past.

By design, the LSTM unit (as illustrated on the next page in fig. 3) preserves the

gradient as it is, without diminishing it, and does so by introducing the special pipe (shown

in red) which gives unrestricted access to the entire history of states without altering the

gradient. The functionality of LSTM cells is determined by implementation of different gates

that oversee all the state changes, controlling the alteration of the weights themselves. The

great breakthrough of LSTM design is that association of distant events in time with target

outputs becomes possible using this architecture.

1 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ - accessed throughout (February) 2019

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

9

Figure 3 - LSTM layout, as cited by SuperDataScience2

2.3 Machine Learning Approaches to Price Prediction

A great deal of research has been done on market forecasting using artificial intelligence on

the stock market and foreign exchange; however, it would seem a lot less research has been

done into using this technology for predicting the price of cryptocurrencies, a fact which

appears to be surprising, especially since this market is considered to be less efficient and

therefore prone to exhibit more foreseeable behaviours in comparison to much older,

regularized and legally empowered markets (though remaining hard to predict because of

the granular noise and stochastic volatile nature of the market, which accounts for a

continuing need for new approaches, especially on the machine learning side).

The papers that have been found on ML approaches to price prediction either use

less efficient, older ML technologies on the Bitcoin (BTC) market, or using more modern

algorithms on the stock exchange or other similar market; this literature discussion here will

contain a mix of all the relevant studies on time-series prediction, regardless of the market it

is applied to, as there is sufficient similarity between the BTC market and the others.

It is important to note the dynamic influence that technology development is having

on the efficiency of a market: using a sliding-window MLP may have worked well in the past,

2 https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-long-short-term-memory-lstm/ -
accessed throughout (March) 2019

https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-long-short-term-memory-lstm/

10

when few people were using the technique; however, as soon as there are considerable

numbers of users of a technique such as this, the market changes and becomes more

efficient, and so less profitable, in relation to that specific prediction solution. This effect not

only accounts for the importance of discovering new technologies, in order to secure the

advantage of using a currently-exclusive technology, but also raises a concern about

interpreting the results of older works on this subject, which should be done with care.

As evidence to the soundness of this project’s general approach—to use recurrent

nets for financial price series prediction—(Dixon, 2017) has demonstrated that recurrent

neural networks (RNNs) could help in high-frequency trading prediction, even though the

type of network used (Elman net) is known not to be able to handle longer-term time

dependencies well. Dixon's paper bases its work upon previous successes in predicting

patterns in univariate financial time series using RNNs, and aims to solve the sequence

classification problem of short-time market movements by using the limit order book and

market orders within the Chicago Mercantile Exchange (CME). It argues that the RNN

network has been able to efficiently capture the non-linear patterns of price change.

 There are many approaches to predicting Bitcoin price movements. For example

(Greaves and Au, 2015) studies the correlation between Bitcoin’s transactional network

topology and movements in price. Extracting transaction data from all the activity prior to

2013, the authors focus on using the layout of transactions to analyse the prediction

capability of locality. They opt for a complex selection of input features computed for their

statistical insight, while also making use of graph and set theory. This paper uses multiple

sources for a more abundant dataset, and also performs non-trivial analyses over the

Bitcoin network topology, yet results in a prediction accuracy hardly better than random.

Another interesting idea was presented in (Groß et al., 2017) where the approach for

predicting time-series was to use a “space-time” convolutional network in conjunction with

a recurrent neural network. The authors were hoping to exploit the high performance of

CNNs in analysing the spatial relationships in data. For this reason, they chose to translate

the time-series data into a picture. Different moments in time are described by progressing

coordinates within the picture; thus a sliding-window technique is being used to

concentrate attention on the events in chronological order. The results of this paper are

11

stated to be better than the state of the art, although the most intriguing aspect is the

ability of the space-time CNN to learn feature representations of the network at least similar

in quality to those provided by a domain expert.

Another relevant paper was that of (Guo and Fantulin, 2018), which intended to

compare various models to be used for Bitcoin price prediction. Here the authors have used

hourly volatility data referring to the standard deviation and returns on the Bitcoin market.

The dataset covered more than a year and was also linked with order book data. They

extracted other statistical measurements as features to be used, and tested various

mathematical models, with an evaluation based on root mean squared error (RMSE) and

mean absolute error (MAE), though these may not be the most relevant indicators. Few of

the models used machine learning, and the one that did, the Random Forest algorithm,

could be considered unsuitable for time-series prediction. No trading strategy was

implemented in this paper and part of the authors' conclusion was that using features from

the order book did not help the prediction performance, which seems surprising.

Throughout the literature survey phase, it was noticed that a certain paper was

quoted with significant frequency, and so was considered deserving of a deeper analysis:

“Trading Bitcoin and Online Time Series Prediction” (Amjad and Shah, 2017). This study

considers the poor performance exhibited by the traditional time series prediction tools

such as the ARIMA mathematical model and also the lack of probabilistic interpretation

presented by these methods. The paper intends to lay out a new framework for predicting

and trading Bitcoin. The authors attribute the lesser efficiency of the Bitcoin market to

stationarity and mixing of the market value time series, and argue that these are the very

properties that should be exploited. Their work samples the Bitcoin price history every 10

seconds. While their dataset is large—requiring around eight months to train the models—

they make use the order book only for calculating the Bitcoin price, and also do not use any

of the newer algorithms which are known to be well-performing on time-series prediction.

In their section of algorithm comparison they present the performance of the following

algorithms (in order of increasing profit generated): ARIMA, Empirical Conditional (with an

acceptable performance), and in the first place LDA, Logistic Regression and Random Forest

algorithms, with extremely similar performances. Their ML solutions are without doubt

12

superior to the models they claim to be widely used (ARIMA), however it would be

interesting to see how a modern neural network architecture, designed especially for the

processing of temporal data, would perform using their setup.

2.4 Trend Prediction and the methods of Tsantekidis et al.

2.4.1 Novel approaches and characteristics

While most of the above-discussed work in the area of financial time series prediction is of

interest, and some of the problems are tackled rather ingeniously, one questionable aspect

is present in all of the approaches: the focus on one step ahead directional forecasting. This

could mean that predictions may not be entirely practical due to their not accounting for

sustained and longer term price movements.

With this in mind, one paper stood out as a promising foundation for this project.

“Using Deep Learning to Detect Price Change Indications in Financial Markets” (Tsantekidis,

et al., 2017) presents an interesting approach to the prediction problem, proposing a

potential solution to the noise problem by use of smoothing. While this paper uses features

extracted from the order book, instead of using the one step ahead prediction, the authors

introduce two key parameters—k and α—that can tailor a forecast to a varied set of

horizons and also smooth the inputs for a varying representation of past trends.

2.4.2 The smoothing procedure

The k variable acts as a lookahead: the algorithm takes, at each moment t in time, the price

of the stock values for the following k timesteps in the future and averages it, then

compares the resulting mean to the mean of prices of the previous k timesteps within the

past, as follows,

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
1

𝑘
∑ 𝑝𝑟𝑖𝑐𝑒𝑡+𝑖

𝑘

𝑖=1

−
1

𝑘
∑ 𝑝𝑟𝑖𝑐𝑒𝑡−𝑖

𝑘

𝑖=1

 , (1)

in order to determine whether the price is likely to go up or down. Before considering the

outcome, the difference obtained in the previous step is run through a threshold, α ,

13

𝑙𝑎𝑏𝑒𝑙(𝑚𝑖𝑑𝑝𝑟𝑖𝑐𝑒𝑛) = {

(𝑈𝑝 | 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 𝛼)

 (𝐸𝑞𝑢𝑎𝑙 | √𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒2 < √𝛼2)

(𝐷𝑜𝑤𝑛 | 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < −𝛼)

 , (2)

that checks whether the amount of movement is large enough to be taken into

consideration; otherwise there is considered to be no movement.

2.4.3 Using LSTM units

Another notable aspect of this paper is that it also uses the highly efficient LSTM network

that the rest of the studied literature has shown to be valuable. It is confirmed in the paper

that thanks to the protection of the cell state provided by the gates within the LSTM design,

the network is indeed able to efficiently correlate events distant in time, also solving the

vanishing gradients problem. Regarding the architecture of the network, the authors come

up with the experimental optimum range of 32 to 64 LSTM hidden units, claiming that more

units would generate overfitting and that fewer would results in underfitting (resulting in a

reduced accuracy); exactly 40 hidden units are chosen, though there is no justification

within the paper for this, or for the authors' earlier statement about over- and underfitting.

2.4.4 Results obtained by Tsantekidis, et al.

Even though no trading strategy was attempted, it is reported that the algorithm performed

encouragingly: 3 values of k were tested: 10, 20 and 30 with Cohen’s Kappa values reported

as 0.50, 0.43 and 0.41 respectively. Notably, however, the paper only presents results for

these three values for k. This is a surprise: decreasing k from 30 to 10 improves

performance, yet no values smaller than 10 are considered. The motives of the authors in

not presenting results for smaller k values are unclear. While there is a chance a smaller k

would perform better, it is possible that the optimum value might be discovered to be k=1.

This last would be a problem, as for this value there is effectively no smoothing, and thus

the paper's central argument—that smoothing helps with prediction—would be invalidated.

14

Chapter 3 - Design and Methodology

3.1 Data Representation

It is clear from the Literature Review section that many inputs and features can be fed into a

prediction system. A number of choices could be taken here: 1) to gather tick data (every

single transaction ever made) or use a fixed frequency sampler of the intended parameters;

2) to consider only the Bitcoin price itself, or track the transactions to discover the network

topology; 3) to use limit order book data to gain enhanced insight into the state of the

market at each timestep, or to use it for a simple calculation of volatility. Out of all these

variants, the work here chooses to gather data from the limit order book, reconstructed

from high frequency snapshots of the market. The choice of using order book data was

made because of the more in-depth representation of the market it provides – by having the

volumes associated with the trading positions at each step, a better understanding of the

market dynamic is allowed – a fact the explored literature seemed to underline as an

essential element in a better pattern recognition scheme, especially as opposed to the less

informative overall price value for every tick of the market.

3.2 Data Acquisition

One of the important reasons for choosing cryptocurrency markets, as opposed to Foreign

Exchange or the Stock Market, aside from the market itself being more volatile and

inefficient (leading to increased predictability), was the accessibility of cryptocurrency data,

which is far more easily acquired than that of the traditional markets which require large

payments to various accredited brokers for receiving such a detailed dataset.

Initially, this project intended to use limit order book data by the tick (every single

movement recorded on the market) from 10 days of Bitcoin activity. However, a

compromise had to be made in terms of dataset size because of the increase in complexity

that this scale of data acquisition would imply. Thus, the dataset used has the Order Book

snapshot for 160,000 timesteps, over the 10 days to be considered – this approximates to

one snapshot of the market every 10 seconds.

The data used in this project originate from the CoinBase Pro and Bitfinex platforms.

15

3.3 Feature Extraction & Preprocessing

Having chosen a similar data representation and temporality to that used in the foundation

paper of Tsantekidis, et al., whose results seemed good, the intuitive decision was to try a

similar approach here for feature extraction: 40 parameters have thus been selected for an

in-depth representation of the market’s structure at each moment in time (each timestep):

first 10 of the lowest bid prices and first 10 of the highest ask prices on offer, together with

their corresponding volumes per trade position.

The 40 parameters per timestep then undergo a normalization process

(standardization) by subtracting the mean from each value and then dividing by the

standard deviation:

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − �̅�

𝑠𝑡𝑑𝐷𝑒𝑣(�̅�)
 (3)

The values are thus scaled to an acceptable range for the neural network expected input (as

was also done in (Tsantekidis, et al., 2017)).

3.4 Target Label Construction: k & α

The effective price at a specific moment in time can be derived from the dataset by

calculating the arithmetic mean of the highest ask and lowest bid values. These price values

are used for analysing the evolution of the market and computing the target labels.

There are 3 labels used here: Up (represented by the numerical value 2), Down

(represented by 0) and Equal (represented by 1). The two parameters introduced in

(Tsantekidis, et al., 2017), k and α, would decide how the labels are distributed among the

three categories. In order to construct the labels, for a given timestep t, the average of the

price values associated with the previous k timesteps is subtracted from the equivalent

average for the following k timesteps, using equation (1), presented in Chapter 2. If the

absolute difference obtained is higher than the value of α, then we can say the fluctuation is

notable and assign a label accordingly (Up or Down); otherwise, we consider the movement

to be too little to take into consideration and assign (Equal), as described in equation (2).

16

k could be thought of as a “lookahead”: its value decides the number of prices

before and after the current step that have to be compared, while the α parameter is the

threshold that must be surpassed for the movement to be considered as relevant.

3.4.1 Exploring α

The value of the threshold parameter α is unknown in the paper Tsantekidis, et al., and

there is no indication as to the means by which a value should be chosen. Three ideas

regarding the choice of α arose after considering the influences it might have on the rest of

the system, along with the different aims a trading setup might demand:

1) α could be chosen in relation to the transaction costs of a trading platform, once we

have set up a successful trading strategy, being the minimum value we would be

aiming to gain from the investment, such that the maintenance costs of the

transaction could be covered.

2) α could be chosen as the threshold value which gives a balanced three-way split

between the up, down and equal categories that we use as target labels.

3) α could be optimized to give the largest profit.

3.4.2 Exploring k

As it has been discussed in Chapter 2, (Tsantekidis, et al., 2017) only consider three values

for the smoothing parameter k, 10, 20 and 30, which display a decreasing performance in

relation to Cohen’s Kappa. The importance of exploring smaller values of k was emphasised

in Chapter 2, due in part to the possibility of discovering the optimum value was k=1, which

would invalidating the philosophy behind smoothing (implying an optimum lookahead value

of k > 1). There is also a very high possibility that k=10 is not the optimum value for

classification, but that some value 1 < k < 10 might prove better. Either way, this project

considers the presented arguments to be both interesting and challenging enough as to

investigate the performance for lower values of the k parameter.

The higher the value of k, the more the focus shifts to the macro scale of movements

and investigation would be expected to provide insight about long term movements, with a

better chance of recognising higher amplitude patterns, extended over a longer period of

time (and otherwise non-observable). On the other hand, it is also true that there will be a

17

value for k above which the prediction will be greatly degraded. Therefore, common sense

implies the optimum value of k would be, for either trend classification or profit,

somewhere between the two—higher than 1, performing better as k increases, peaking

somewhere very likely below k=10, and then steadily going down again.

3.5 Training / Testing / Validation Data Split

This project will aim to follow the methodology of (Tsantekidis, et al., 2017) for ease of

comparison, since a similar dataset will also be used (10 days of transaction data); therefore

the split used here, for training/validation data relative to testing data, will also be 7:3.

3.6 Neural Network Architecture: LSTM Design Decisions

Designing any neural network implies analysing the input and expected results such that the

proposed architecture performs the task most effectively. As stated in Chapter 2, different

operations within different network layers have an impact on the program’s learning and

generalisation abilities. Although specialized architectures may put together lots of layers

with different functions, creating a complex path for the processed data to go through, the

purpose of this paper is to investigate the use of LSTM neural networks in cryptocurrency

markets (Bitcoin) at a conceptual level; having an over-complicated layout could alter the

clarity of our results. Therefore, the proposed network architecture contains only two

layers: the LSTM itself with a chosen number of hidden units and a fully connected layer

with softmax activation and 3 neurons for the 3 considered classes.

It is common knowledge in the field that in order to avoid overfitting on the training

data provided (picking up particularities of the given dataset that will not generalize to other

datasets which may be used for testing or in practice) it is best to restrict the number of

parameters within the network in relation to the number of instances used for training—

overfitting has the best chance of being avoided if the number of parameters is considerably

smaller than the number of samples used (1/10th of the number is a common heuristic

rule). This principle will guide the choice of the number of hidden units.

18

3.6.2 Hidden units

(Tsantekidis, et al., 2017) had a dataset of 5 stocks over 10 days; the duration is the same to

the one used in this project, though here only Bitcoin data are being used. As described in

the previous chapter they proposed a number of LSTM hidden units between 32 and 64 and

claim that their experiments used 40 hidden units. The present project intends to

experiment with a range of choices before settling on a number of hidden units appropriate

for the cryptocurrency dataset size.

3.7 Performance Measures - Evaluation

3.7.1 – Measures of classification performance

Traditionally, when training machine learning algorithms, the standard accuracy metric,

given simply by the proportion of correct predictions over total predictions, is most often

used. However from a classification perspective, considering only accuracy could be rather

misleading, especially while dealing with imbalanced data sets, as high accuracy values can

be obtained by over-assigning to the majority class. This problem is even greater when the

imbalanced data contain more than 2 label categories, as here.

This is the reason why in this project, a confusion matrix was regarded as the

obvious choice for assessing the results. Also known by the name of error matrix, it is used

in supervised machine learning as a tool of performance visualization in the form of a two-

dimensional table which shows frequency distributions per each class.

Actual

Predicted

UP EQUAL DOWN

UP UP predicted as UP EQ predicted as UP DOWN predicted as UP

EQUAL UP predicted as EQ EQ predicted as EQ DOWN predicted as EQ

DOWN UP predicted as DOWN EQ predicted as DOWN DOWN predicted as DOWN

The table’s layout associates the predicted classes by lines and actual classes by

columns. Adding the numbers from an entire row produces the total number of predicted

instances of the class designated by the row, while similarly, adding up the numbers from a

column gives the total number of actual instances (of the class) there were in the dataset.

19

Correctly predicted instances are located on the principal diagonal of this matrix, with the

sum of the values on the principal diagonal equating to the traditional accuracy metric.

The matrix is then used here to compute the Matthews Correlation Coefficient

(MCC) as a classification performance metric. The MCC has been chosen (over Cohen’s

Kappa used by the Tsantekidis et al. paper) mainly for its n-class variant:

𝑀𝑐𝑐 =
𝑝𝑎𝑛𝑎 − 𝑢𝑎𝑜𝑎

√(𝑝𝑎 + 𝑢𝑎)(𝑝𝑎 + 𝑜𝑎)(𝑛𝑎 + 𝑢𝑎)(𝑛𝑎 + 𝑜𝑎)
 (4)

MCC formula for C-class problem, defined for class a, where:

- pa = number of cases of class a correctly assigned to that class

- na = number of cases correctly predicted to be not class ‘a’

- oa = number of cases predicted to be class a which were not of this type (false positives)

- ua = number of cases which should have been predicted to be class ‘a’ which were

 incorrectly assigned to one of the other classes (false negatives)

This formula gives an MCC value for each class separately. In order to provide a

single-valued metric MCC value for comparison of the results from different experimental

conditions (e.g. different values of the smoothing parameter k), the arithmetic mean of the

3 MCC values is computed for the 3 classes (Up, Down, Equal).

3.7.2 – Measures of profitability

Classification metrics (MCC, Cohen's Kappa, or even accuracy) do not relate directly to

profit; maximum profit would not necessarily be where a classification metric peaks, as

these metrics only take into consideration the direction of a movement of the price, not its

amplitude. However the profit is highly dependent on the size of the movement. For this

reason, profit-focused testing should also be performed.

Assuming that the methodology will perform well in relation to classification, we

consider here a trading strategy based on the algorithm that we will be constructing.

Assuming also we are concerned not only about profit but variance (reliability of the

20

algorithm within a practical trading approach) the testing of such a strategy should involve,

as well as a standard measure of profit, a calculation of the Sharpe ratio, defined below:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
 (5)

Rp = return of portfolio

Rf = risk-free rate

σp = standard deviation of the portfolio’s excess return

21

Chapter 4 – Results

4.1 Initial Results

The results to be presented later in this chapter were based on an amended dataset, as the

early work demonstrated discrepancies that were eventually traced to an anomaly in the

initial dataset, such that part of the data was, in fact, missing. It appears that the server

being used to record the market suffered a RAM malfunction, which locked the threads of

execution for a period of time, resulting in partial data loss. This issue generated an anomaly

within the dataset around one quarter into the observation period in place of the missing

data. (see the fig. 4 below). This inconvenience has actually proven to be useful as it pointed

out that instantaneous inconsistencies are not a very serious problem when basing

predictions on trends (regardless of the movement amplitude); if only one of the many

short-time-period differences in the dataset is excessively large this does not influence the

overall reading to a considerable extent.

However, there was one positive outcome from this initial setback, which was that

having sufficiently varied training data, in order for the algorithm to pick up all possibly

relevant patterns in the market, was discovered to be more important, even, than the

presence of the anomaly itself (fig. 4). This finding drew attention to the timeframe of 10

Figure 4 – First dataset’s Bitcoin prices during the time period

considered (timesteps of 10s used here and throughout this work)

timestep

p
ri

ce
($

)

22

days being not as sufficient as initially believed, and further decisions, especially regarding

the train/test/validation split, were influenced by this observation.

4.2 Selection of Second Dataset

As stated in the previous section, a major concern was to ensure sufficient variation in the

training data, as well as making sure the data contained no erroneous entries. A second

dataset was therefore obtained, that was not only checked to be free of anomalies, but was

also much larger. The completely new data set, to be used for training, validation and

testing for the rest of this project is shown in fig. 5 below.

4.3 Train / Test / Validation data split

Although we had initially aimed for a 7:3 distribution among the train/test data,

experiments showed that extending the training set with an extra 10% to cover more data

greatly improved the classification accuracy, so the final split of the dataset was 80%

training (from which 20% was used as validation) and 20% used as testing set, which the

model never sees until evaluation.

Figure 5 – Second dataset’s Bitcoin prices during another 10 days’

time period considered (thus, a different set of timesteps)

timestep

p
ri

ce
($

)

23

4.4 Network hyperparameter selection

Hyperparameter selection was done in relation to the metrics supplied within the

TensorFlow environment, loss (to drive the training) and accuracy (to monitor

performance). The loss function used was “categorical crossentropy”.

One choice to be made was the number of training epochs; a value of 100 was

chosen because it seemed the most substantial improvements in accuracy and loss function

had already taken place by the 100th epoch.

The number of hidden units in the LSTM had to be experimentally decided, taking

into account the data differences between this project and (Tsantekidis et al., 2017): both

pieces of work use limit order book data, but here the Bitcoin market is used, while in the

cited paper various different stocks (from NASDAQ) are analysed. The number of markets

(several stocks, one cryptocurrency) is not the main difference, which is the frequency of

movements that occur on different markets: Bitcoin has a considerably lower number of

transactions per hour than regular stocks. For these reasons, as stated in Methodology, we

were expecting to need to choose fewer LSTM, units in order to avoid overfitting. The

number of hidden units appropriate to our dataset size was found to be 15.

Figure 6 – loss evolution for one of

the models

Figure 7 – accuracy evolution for

one model

24

 Mini-batching was used in these experiments, and another empirically established

value was the batch size of 64, attempts to change it to either higher or lower powers of 2

resulting in greatly reduced classification performance.

4.5 Training label construction: k & α

4.5.1 Unexplored implications of the two parameters

For a fixed k lookahead, an α value of 0 would mean that any movement would be

considered relevant since there would be no threshold. Therefore at the label construction

stage such a setting would push as many readings as possible to the UP or DOWN (as

opposed to EQUAL) label category; similarly, an increasing value of α would mean putting

more and more instances into the EQUAL category since a higher value of α would have less

chance of being met, such that over a certain limit, the value of the relevance threshold

would become too high to ever be reached by movements on the market.

On the other hand, k acts to modify the prediction range. The higher k goes, the

more timesteps are being averaged and the difference between past and present has

increasing chances of being larger, therefore the movements’ labels tend to move to the

extremes (UP and DOWN categories). Conversely, when k goes down, the differences tend

to be less noticeable for moments closer in time, so there will be a higher chance the

movement is almost null, thus again moving more instances to the EQUAL label category.

As stated in the Methodology chapter, there is no explanation within (Tsantekidis et

al., 2017) as to how α should be chosen. For example the paper could have used a single

value of α for all the k ones considered, chosen to balance the middle value of k (in their

case k=20 since they only tested 10, 20 and 30). This was a reasonable initial assumption.

However, when we tried to select a single value of α chosen to accurately balance the labels

for the middle value of k, it was observed that for the k values closer to the extremes, the

labels became greatly unbalanced over the three categories, thus increasing the difficulty of

prediction and making the use of accuracy as a performance measure unreliable. In order to

make the classification problem reasonable, and also preserve the same label proportions

25

so that we could make a sound comparison across different values of k, we have chosen a

value of α for each value of k that distributes the labels evenly into the three categories.

Empirically, it has been established that the following combinations of k and α values

gave the most balanced distribution of labels:

k α

1 0.00

2 0.00

3 0.00

5 0.05

10 0.20

20 0.50

30 0.75

45 1.00

60 1.30

120 2.00

Table 1 - k & α optimal pairs

4.5.2 Further investigation of the role of the k parameter

As discussed in the Methodology chapter, the reasoning of the Tsantekidis et al. paper was

quite unintuitive in that they only showed results starting with k = 10, then jumped to 20,

then 30—this is odd, as the accuracy was decreasing during this process. Intuition suggests

that if your starting point is on a slope, you should try to find the peak, which would here

imply investigating values k < 10. In addition the results of the paper left open the possibility

that the best value of k might be k=1, which would have undermined the paper's central

proposal that smoothing (using k > 1) benefitted prediction and/or profit. These several

observations therefore prompt us to check the values of k below 10.

26

The figure below shows average Matthews Correlation Coefficient (MCC) values over

10 runs with different weight initialisations, together with standard deviations (as error

bars) as a function of the parameter k. The α value for each k chosen from Table 1 The

choice of 10 runs for averaging was made by increasing the number of runs until the

average MCC of each half of the set of runs was similar: 10 was found to be a sufficient

number in this case, with both an acceptable margin of two decimal points in MCC, as well

as a reasonable running time of about 5 hours for 10 runs of the algorithm with a single k &

α selection (using a TensorFlow backend graphically accelerated on a machine with 4GB

dedicated GPU—Nvidia GTX 950M).

It is plain from Figure 4, above, that 10 is not in fact the optimal value of k: while

performance decreases as k increases to larger values, as was also found by (Tsantekidis et

al., 2017) the optimal MCC value is for k=2, closely followed by k=3. This result is both

reassuring—the optimal performance was not for k=1, thus validating the Tsantekidis et al.

proposal of smoothing in order to better predict price trends—and interesting, in that the

Figure 8 – Variation of MCC with lookahead parameter k

Value of k

M
at

th
ew

s
C

o
ef

fi
ci

en
t

27

best value differed substantially to the value of k=10 favoured by Tsantekidis et al. (though

it is possible the optimal value could be dataset dependent). At any rate, figure 8 gives a

good basis for hoping that a profitable trading strategy can now be developed.

4.6 Trading Strategy Implementation

Given that investigating and optimizing the methodology within the paper on which this

project was based led to satisfactory results, and also that the project was well within its

time frame, an attempt at implementing a trading strategy became possible.

Having established that price movements could be quite well predicted, we will be

now trying to see how the prediction model would perform while linked with a trading

strategy designed especially for it. The process of this section aims to gain an insight into

how reliable and useful our approach could be in practice. We choose at this point to adopt

a long-only trading strategy; clearly in future work shorting could also be considered

(though this is not straightforward for cryptocurrencies). We also choose to ignore the

transaction costs, which are low and, unlike conventional currencies, the same for any

amount of Bitcoin traded.

4.6.1 Variable k lookahead, 3 steps trading

The initial approach proposed is derived from classic, straightforward, one step ahead

trading: at every step, make a prediction for the following k steps; if that prediction is an

upward movement, then buy, otherwise do nothing. If a position was bought, then

regardless of the price value, once reaching the timestep for which the movement was

previously predicted by the algorithm, we sell immediately. Since our top classification

performance was for k=3, it seemed a fair decision, at least initially, to elaborate a trading

tailored especially for this value, as follows (see fig. 9 on next page).

28

This strategy implies that, at any moment in time, the maximum number of positions

that can be held is 3. Since the purpose of this experiment is to gain a basic insight into the

model's profitability, we will assume buying to mean simply purchasing an entire Bitcoin at

every trading opportunity, for the market price. Since we could only hold 3 possible

positions at one time, and since also the price of Bitcoin throughout our chosen period was

around $3000(US dollars), it follows that the overall investment for this experiment will be

somewhere below $10,000 (relevant for the scale of profit measurement).

4.6.2 Trading strategy results (profit)

When implementing the above-described trading strategy on top of the proposed prediction

model for k=3, we get the following raw profit (fig. 10 & 11) over the testing period (20% of

the dataset implying here that the testing period would be 2 days):

for each timestep t:

predict trend at t+3 timestep (that means running the

algorithm for k=3)

if the predicted trend is UP, then commit to a

position, otherwise do nothing

if a position has been taken three steps ago, then sell

it

Figure 9 – 3 steps trading algorithm

29

The top profit value for the seed illustrated in fig. 7 (left) is $764 (to be compared

with a starting sum of about $10,000, hence around 8%), and the final value (when the

testing period stops) for this seed is $587 (around 6%), which is an excellent result for two

days of trading (though we note that transaction costs are not at the moment included). It

thus seems that even with a rudimentary approach to trading, the prediction model

proposed is capable of making profit. Of course it might have been that this one seed was

'lucky,' and for this reason the profit curves for all 10 have been plotted on right hand side

of the figure above: it can be seen that the behaviours and final profits do not vary greatly,

and that no run results in excessive variance or losses. This is another excellent and

encouraging result.

Given the performance of this initial k=3 test, it was interesting to see how the

trading strategy outlined in fig. 9 performs for other values of k, even though the trading

method was originally designed for the k=3 value.

Figure 10 – profit for one seed (k=3) Figure 11 – profit for all seeds (k=3)

30

The same experiment was performed over all the 10 seeds for all the values of k (and

their relevant α’s). The figure below (fig. 12) shows how one single seed behaves for

different values of k:

It can be seen that profitability degrades quickly beyond k=30, this being a possible

reason why results for these larger values were not shown in (Tsantekidis et al., 2017). But

which value of k is best? It may not be k=3, the best value in relation to classification

performance, since, as noted previously, the ability to classify price movements well does

not translate automatically into high profits.

As the plot for each k had a slightly different look for each seed, our approach to

finding the best k was to smooth the results by taking the final profit for each k (red circle, in

the fig. 12 above), for each seed, and average it with the profits for the same k from the

other seeds, and plot the average as a function of k.

Figure 12 – profits for different k values for one single seed

31

The plot which resulted is the following:

This plot shows that even when using a trading strategy designed for the optimum

classification performance k value of k=3, a lookahead of higher value—k=10—that smooths

away more of the noise is preferable, giving a highest final profit of around $700 on average.

The results summarised in fig. 13 strengthen the finding that looking further into the future

(and backward into the past) as opposed to doing simple, one-step prediction, is a

methodology better able to handle noisy, irrelevant fluctuations, and provide useful

predictions that would be profitable in practice. However fig. 13 also show in its right hand

portion that attempting to smooth too much—equivalent here to trying to predict too far

into the future—is not feasible. (Though notably profits for the very large lookahead of

k=120 are only a little worse than for the 'classic' value of k=1, which achieves just above

$350, underscoring the inadvisability of one-step prediction.)

The choice of 3 trading positions might be questioned in the cases for which k was

not also 3, with the suspicion, for example, that a larger number of trading steps for larger k

values might be superior. When this theory was put to the test, however, the outcome was

Figure 13 – final profit value for each k averaged over all the seeds

32

otherwise: the figures below (fig. 14 & fig. 15) show results for the combination k=10 with

10 trading positions opened (on the right hand side) compared to k=10 with 3 trading

positions opened (on the left hand side). k=10 with 3 trading positions is clearly better.

(Since a maximum of 10 trading positions are allowed to be held in the alternative

trading strategy for k=10, the investment would be approximatively 3 times larger than for

the k=10 with 3 steps trading scenario, with profit multiplied likewise. For this reason the

highest profit for the 10 steps trading strategy, on the right, should be divided by 3.)

In this case, the 3 steps trading strategy has still managed to hold its ground. However why

would exactly 3 be the optimum number of positions to act upon? Might there be another

combination of k lookahead and trading positions that would give the highest profit of all?

We plan to address this question later on, but for now, further investigation will be carried

out on the 3 steps strategy, with the aim of better understanding the results.

4.6.3 Trading strategy results (feasibility)

It has been shown that the highest profit is for k=10. However financial investment needs

also to consider risk. The evaluation of the investment risk will be assessed using the Sharpe

Ratio described in the Methodology. However another, graphical, indication of the reliability

of the trading strategy would be to look at the variability in performance for the 10 different

Figure 14 – profit for 3 steps trading

strategy

Figure 15 – profit for 10 steps trading

strategy (different scale)

33

seeds for each k, which is done in the figures to follow. We might expect that higher

reliability of prediction—a lessening of this variability—would correspond to an increasing

MCC (better classification performance). But is this so?

(see next page for remaining figures)

34

In fact, as can be seen in the preceding figures, it is in fact true that the highest classification

performance, for k=3, correlates to the 'tightest' spread of profits. This lack of variation

(with seed) of final profit might be appealing to an investor concerned about the possibility

of losing money, such that they might prefer a k=3 model over the on average more

profitable k=10. In the end it would be down to the investor's appetite for risk.

4.6.4 Trading strategy results (Sharpe Ratio)

A more formal approach to risk is to calculate the Sharpe Ratio, described in section 3.7.2

and defined by formula (5). The portfolio return will be extracted from the above-mentioned

simulations, specifically from the seed with the highest profit for k=10, by dividing the profit

by the monetary input over the studied period,

𝑅𝑝 =
 𝑝𝑟𝑜𝑓𝑖𝑡

𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
= (

726$

9428$
) = 7.7% , (6)

where the investment for this period will be considered to be the maximum amount of

funds to be consumed at a time. The Rf (risk-free return) has been chosen to be the return

of a UK governmental bond taken from the Bloomberg website3 of 0.70% per year, which

we divide by 182 to account for the trading period of 2 days considered here, the tested

period of our proposed trading strategy:

3 https://www.bloomberg.com/markets/rates-bonds/government-bonds/uk - accessed in March 2019).

Figure 16 – profit for 3 steps trading strategy (for 8 values of k over all seeds)

https://www.bloomberg.com/markets/rates-bonds/government-bonds/uk

35

𝑅𝑓 =
𝑦𝑒𝑎𝑟𝑙𝑦 𝑦𝑖𝑒𝑙𝑑 (𝑈𝐾 𝑏𝑜𝑛𝑑)

182 𝑑𝑎𝑦𝑠
 = 0.00003, (for 2 days) (7)

Using the following notations

𝑝 𝑡 – profit at timestep t (with T being the final timestep)

𝑥𝑡 = 𝑝𝑡 – 𝑝𝑡−1

we define Rp more formally to be

𝑅𝑝 = ∑ 𝑝𝑡 – 𝑝𝑡−1

𝑇

𝑡=1

 (8)

and the mean of 𝑥 to be

𝑥 =
1

𝑇
 ∑ 𝑥𝑡

𝑇

𝑡=1

(9)

The standard deviation can be calculated by the following formula

𝜎𝑝 = √
∑ (𝑥𝑡 −〗〖𝑥)2𝑇

𝑡=1

𝑇 − 1
 (10)

such that, finally, the Sharpe Ratio for the k=10, 3 steps trading strategy, over the testing

period considered, can be calculated to be

36

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
=

 0.077 − 0.000038

1.40
= 0.06 (11)

While any positive value of this coefficient demonstrates a trading strategy is not absurd, a

value of 0.06 is considered to be rather small. However, there is one likely contributory

explanation: the run-in period of the algorithm (see fig. 17), which takes roughly until the

7500th timestep of the testing period for all observed runs, would not be taken into

consideration by a final, live, version of the algorithm, that was being used on real data.

One should not be allowed to trade until the algorithm gets enough data to process the

incoming price patterns, a principle which could be easily coded up in future.

Figure 17 – run-in period not relevant

37

Chapter 5 – Discussion and Conclusions

5.1 Discussion

The preliminary strategy explored here, which was intended to explore the potential of

using a smoothing method for trading, has overall been very promising. Investigation

validated the assertions of the paper on which the research of this project was based, that

of (Tsantekidis et al., 2017), in fact doing so more persuasively than the paper did itself,

being willing here to investigate a broader range of lookahead (smoothing) parameters k,

and looking at results in terms of both classification performance and profit.

 The trading strategy based on the prediction model was successful in being able to

decide in all cases (for all the seeds and all k values) when exactly it should commit to a

position, right before the largest variations of Bitcoin price when it had the biggest potential

for profit. However as was seen at the end of the last chapter there was a high standard

deviation of profit values over time, the reason for the low Sharpe ratio. While this could be

to some degree alleviated by not trading until the LSTM had completed its 'run-in' period, to

some degree the high variance may be an unavoidable a part of the methodology, in which

case it would be down to investors to decide how much risk they would accept.

5.2 Future Work

It would be worthwhile to investigate more efficient and perhaps more complex approaches

to trading strategies, including the possibility of adopting short positions. Transaction costs

(while they are very small for Bitcoin) should ideally also be included. There is also the

concern raised at the end of section 4.4.3 as to whether the multi-step trading strategy

really does work best for 3 steps, as only two values for this parameter (3 and 10) have so

far been tried . A good plan, therefore, for continuing this project would be to perform a

grid search for the best combination of k lookahead and the number of positions to be held

within the trading strategy.

On the hardware and software side, a possible solution to the server malfunction

which generated a data anomaly affecting early results might be to change the system

38

architecture to one similar to the 'Redis' broker for efficient queue handling. Also, a plain

SQL database has been used here; opting for a KDB related system could be beneficial.

5.3 Concluding Thoughts

As the current work has demonstrated, the use of neural networks, especially LSTMs, is

appearing to be a very promising technique for market forecasting and it is therefore

surprising that it has not already been used in a wider scale.

The objectives of this project—to implement the smoothing process proposed by

(Tsantekidis et al., 2017), allowing longer-term predictions (longer than one step ahead

prediction) but with a more rigorous approach to parameter selection—have been achieved

and have generated results that exceeded our initial expectations. Furthermore, these

techniques were applied on a considerably different medium – the one of cryptocurrencies

as opposed to the traditional stock markets – fact which once again underlines the original

contribution of the present work. Every project milestone was reached and time permitted

a trading strategy as an extra accomplishment. While further work can certainly be done, in

regard to both forecasting and trading, it could be argued this project has fulfilled all of the

objectives set out at the beginning.

39

References:

1) Dixon, M. (2018). Sequence classification of the limit order book using recurrent

neural networks - Journal of Computational Science 24 [p.277-286]

2) Guo, T. & Fantulin, N. (2018). An experimental study of Bitcoin fluctuation using

machine learning methods - arXiv:1802.04065 [stat.ML]

3) Puljiz, M., Stjepan, B. et al. (2018). Market Microstructure and Order Book Dynamics

in Cryptocurrency Exchanges - Croatian science foundation project ASYRMEA (5349).

4) Tsantekidis, A. (2017). Using Deep Learning to Detect Price Change Indications in

Financial Markets - 25th European Signal Processing Conference (EUSIPCO) [p.2511-

2515]

5) Cocco, L. (2017). Using an artificial financial market for studying a cryptocurrency

market - Springer, J Econ Interact Coord [p.345–365]

6) Groß W. (2017). Predicting Time Series with Space-Time Convolutional and Recurrent

Neural Networks - ESANN 2017 proceedings, European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning. Bruges

(Belgium), (April 2017) [p.71-76]

7) Revuelta, V. (2018). Design and implementation of a software system for the

composition of a database and automated trading system on different

cryptocurrency trading markets - (ETH Zurich Master Thesis)

8) Greaves A. & Au B. (2015). Using the Bitcoin Transaction Graph to Predict the Price of

Bitcoin – (snap.stanford.edu > No other data)

9) Härdle, W. (2018). Time-varying Limit Order Book Networks - IRTG 1792 Discussion

Paper 2018-016

10) Amjad, M. & Shah, D. (2017). Trading Bitcoin and Online Time Series Prediction -

Proceedings of the Time Series Workshop at NIPS 2016, PMLR 55:1-15, 2017.

40

Appendix:

Project Plan (November)

Dissertation Project Plan and Summary

Andrei Alexandru Maxim

Prediction of cryptocurrency price movements from order book data using LSTM networks

Supervisor: Dr. Denise Gorse

Background

There are a few papers that apply Deep Learning to financial data trying to judge by

comparison the advantages given by state of the art Artificial Intelligence algorithms over

the classical mathematical and statistical approach while trying to analyze market

movements. The respective number of papers shrinks even less to the point that we could

not find any reasonable paper (with novel enough Deep Learning techniques applied such as

LSTM networks) when we are looking at cryptocurrency markets. I believe the overlapping

of these two niches - Blockchain and AI – settles a promising developing environment for

the paper I intend to write such that the content and approach may be original enough,

without having to give up the advantage of having relevant references in other papers.

Aims

To learn about market forecasting and determine if Deep Learning techniques could be

applied to gain insight on the price movements for cryptocurrencies.

 Progress Update

1. General Reading: various articles on non-academic nor professional websites and

blogs that describe possibilities of applying machine learning for time-series

evaluation as well as a selection of 9 academic papers found on Google Scholar while

searching for different combinations of relevant keywords

(Bitcoin/Cryptocurrencies/LSTM/Machine Learning/Forex/Market Forecasting etc.)

2. Focused Reading: from the academic papers I have selected around four that I

should inspire from while designing my project, and especially one - Avraam

Tsantekidis et al. [1](2017) – that I could even use as a model for the initial

experiment within my project as it provides impressing results on forex. Reading

numerous studies within these papers, it has been proven that LSTM networks are

41

the most efficient models to be used when it comes to predicting financial time-

series.

3. Data Acquisition: with the help of a Phd student met through my project supervisor, I

have managed to get data with the same format as in the Avraam Tsantekidis et al.

paper, but for Bitcoin instead of ForEx.

Objectives

1. Study the field and gain understanding on the subject

2. Learn about different market representations (Order-books, spreads, etc.)

3. Learn about different data layouts sampling methods (tick data, set timerate 1hr,

1 day etc.)

4. See relevant research for the best tools to process financial time-series

5. Code a neural network model with the proposed architecture and see how it

performs

6. Extra work: see if we can implement a successful trading strategy using the

constructed model.

Deliverables / Expected Outcomes

We expect to be able to replicate the results mentioned in the Avraam Tsantekidis et al.

paper, for Bitcoin instead of ForEx, using LSTM networks with Keras and Tensorflow on the

data that I have already gained, which should give a thorough response to the main aspect

of my dissertation – how Deep Learning might perform in predicting cryptocurrency market

movements.

However, from there we would also like to see if we can implement a successful trading

strategy based on our model.

Project Timeline

Start of October – Covering Term 1 & Term 2 – Submission Deadline 29th April ~ 6 months

Supervisor meetings have been completed in a number of 4 so far and have agreed to

regular meetings for progress report and discussions.

October – the preliminary research and initial work (scouting feasibility of data

acquisition and techniques themselves) and planning the overall project milestones

November – I have gained the data needed for the initial experiment and I should be

able to code a LSTM and see how it performs by the end of the month/

December / first half of January– Depending on my results I will then see whether I

am to move forward and build an entire framework and strategy based on LSTM prediction

42

capability, or if proven not to be feasible, research on why that may be – differences

between ForEx and Bitcoin that make them perform differently when fed to a neural

network – and also try different algorithms to see if we get the same results.

Late January – I will begin project write-up based on notes collected throughout

each step of the project so far.

As a sidenote, the plan is more well-defined for the first term than it is for the second term,

and I am planning on completing this plan further in time for the intermarry report as I

believe, since this is mainly a research project, my plans would vary considerably depending

on the results I get at these stages of the project (as underlined in my plan for December).

Reference:

Using Deep Learning to Detect Price Change Indications in Financial Markets (Avraam

Tsantekidis∗, Nikolaos Passalis∗, Anastasios Tefas∗ …) – [2017] 25th European Signal

Processing Conference (EUSIPCO) (p.2511-2515)

43

Interim Report (February)

Intermarry Report

Andrei Alexandru Maxim

Prediction of cryptocurrency price movements from order book data using LSTM networks

Supervisor: Dr. Denise Gorse

Progress

As stated in the November plan, the first task that I’ve completed was to setup an

experiment with the data I have been able to provide, to see whether I could get some good

preliminary results with just a basic LSTM network. I have started by performing pre-

processing for the data to prepare it to be fed into the network for the first basic

experiment. It was then that my first concern came up. The data I have been given seemed

to present an anomaly, more specifically, the servers collecting the information have been

down during a significant period of the time at the middle of the studied period. That data

was enough for me to get started on and code every bit of the experiment, however when it

came down to perform optimizations of the parameters involved, I had asked for another

set of data that had integrity – even though the anomaly itself did not interfere with the

training of the algorithm, a bi-product of it did: considerably less data made the algorithm

not able to generalize well.

Some other aspects that we had to take special caution with were the amount of

inconsistencies and mistakes in the paper that we wished to use as a starting point. Many of

the important technical details have been left uncovered, only briefly mentioned, so we had

to figure out on our own what each of the key-parameters should be related to and how to

choose them.

To be allowing for a bit more detail as to better report the challenges: there are two key

values in this approach: a certain “k” that indicates the lookahead during training and an

“alpha” that represents the threshold. The network is taking as features for each timestep

present in the dataset, 40 values in total (10 first bid prices, 10 first ask prices, and their

volumes within the order book – 10 more from each). The algorithm then interprets the

data into three labels: going UP, going DOWN, doing nothing. The split between the three

categories is conducted by the indications of the two aforementioned parameters k and

alpha. When analyzing a timestep, it labels UP or DOWN if the the k-th element before is

subtracted from the k-th timestep forward is greater or less than 0. That gives a more

general overview on the price relating to time, with k getting bigger. Then the alpha

parameter decides whether the difference obtained is high enough so that it is considered a

movement on the market or it is too little to be taken into consideration. The essential

44

problem is that different combinations for K and alpha have a great effect on the

distribution of labels into the three categories. It is known that the most efficient way of

spreading the labels is the one that gives roughly the same number of elements within each.

However, we have reasons to believe that in the Avraam Tsantekidis et al. paper the same

value of alpha is used for different Ks, thus artificially complicating the work of the

algorithm. Therefore, we expect that with an appropriate value of alpha for each K used, we

should not observe the same decrease in efficiency as they say with K getting larger. This is

actually this week’s work and I am currently performing another experiment to see whether

our assumption is true.

I have also researched different metrics for evaluating the algorithm, as the standard

“accuracy” one has proved to be inappropriate for a relevant insight into the performance.

Therefore, our current analysis constructs a Confusion Matrix that we use as base for

implementing the Matthews Coefficient as a performance metric for our model. This

coefficient has been chosen over other candidates like Cohen’s Kappa due to its formula for

n-classes problems that fits well for our purpose.

All in all, I have managed to get a satisfactory prediction performance with my model,

between 0.27 and 0.30 Matthews.

The work I’m starting now is shifting the focus from having an efficient prediction to

optimizing the system for profit. There are different approaches to the problem once one

sets different goals with it, so many principles from these experiments must be slightly

changed to implement a successful trading strategy. Having formed a solid insight on the

problem and all its technicalities, I have a very good base for consistently describing all that

is happening within the algorithm and the decisions I had to make. I have already started

writing up the Final Report for my dissertation and I’m planning to continue working on it at

the same time I am developing the last part of my project.

Remaining work

The plan remains for the following period to:

- Implement a trading strategy on top of the developed algorithm and see if it could

be efficiently used for profit on a less efficient market such as Bitcoin.

- Write the effective report of my dissertation.

It would be interesting to see, should all my results point in the expected direction, why this

technique has not been used for cryptocurrencies yet. Long-Short Term Memory Networks

have proved to be efficient in a number of prediction problems including in the analysis of

the stock market and foreign exchange.[2]

45

Technical details and libraries used

I have used python as the base language for this project – for ease of presentation during

the meetings with my supervisor I have assembled the layout of Jupyter Notebooks for the

possibility of running different cells individually and more freedom of idea exploration. The

initial visual analysis and data extraction from the CSV files I’ve made with the Pandas and

matplotlib python libraries, the pre-processing and data storage I’ve made using the NumPy

library – which is considered to be the most efficient practice working with large arrays and

optimized data processing. For standard data manipulation immediately before the neural

network I have used the basic sci-kit learn pack, and for the deep learning itself I have used

Keras with a TensorFlow (gpu accelerated) backend.

Reference:

[1] Using Deep Learning to Detect Price Change Indications in Financial Markets (Avraam

Tsantekidis∗, Nikolaos Passalis∗, Anastasios Tefas∗ …) – [2017] 25th European Signal

Processing Conference (EUSIPCO) (p.2511-2515)

[2] Sequence Classification of the Limit Order Book using Recurrent Neural Networks

(Matthew Dixon) – Stuart School of Business, Illinois Institute of Technology – Journal of

Computational Science 24 (2018) (p.277-286)

46

Data Samples

(Dataset 1 – 5000 timesteps / 200features/step)

plot id/ timestep:

47

(Dataset 2 – 40 features / 16,000 timesteps)

plot id / timestep

48

MCC full results

49

50

Code entry:

Plot Matthews Coefficient:

Feature extraction:

51

52

Code for model training:

53

54

55

Code for trading strategy implementation (k-steps):

56

57

Manual for the submitted code:

(folder hierarchy)

In Model Training – the code for extracting features from the dataset can be found, together

with the code for training the model, .txt files of the MCC coefficients and the code for

plotting it, the two datasets saved as npy arrays + all the weights for the models I’ve trained.

(one can also find a jupyter notebook version of training code in this folder)

In Trading Strategy – one can find code for plotting most of the graphs used in this project

report, as well as the code for generating the results using the trained models from the

precious point, as well as the results themselves in two sub-folders for the corresponding

two trading strategies attempted.

